Uji Korelasi Pearson

UJI KORELASI PEARSON
Dengan SPSS

Hasil gambar untuk logo poltekkes bhakti mulia sukoharjo


Disusun oleh :

1.      Muhammad Furqon Abdul Q             (A11617571)
2.      Nadan Dyah Savitri                            (A11617572)
3.      Niken Ambarwati                               (A11617573)
4.      Nining Puji Rahayu                             (A11617574)


PROGRAM STUDI DIII REKAM MEDIS DAN INFORMASI KESEHATAN
POLITEKNIK KESEHATAN BHAKTI MULIA
SUKOHARJO
2017/2018






UJI KORELASI (PEARSON CORELATION) PARAMETIK

A.    Korelasi
Definisi korelarsi menurut Kambus Besar Bahasa Indonesia (KBBI) adalah hubungan timbal balik atau sebab akibat. Hubungan antara dua sifat kuantitatif yang disebabkan oleh lingkungan yang sama-sama mempengaruhi kedua sifat. Kaitan dengan statistik, kolerasi adalah salah satu analisis yang dipakai yang dipakai mencari hubungan antara variabel yang bersifat kuantitatif. Analisis kolerasi merupakan studi pembahasan menegani derajat hubungan atau derajat asosasi antara dua variabel misalnya variabel X dan variabel Y.
Kolerasi bermanfaat untuk mengukur kekuatan hubungan dua variabel atau lebih dengan sekala tertentu yang diukur dengan jarak 0 sampai dengan 1. Pengukuran statistik asosiasi dua variabel atau kovarisai dengan istilahistilah koovariasi dan jika tidak sama dengan, berarti terdapat hubungan antara dua variabel tersebut. Hubungan dikatakan kolerasi atau hubungan sempurna jika koofesien kolerasi +1 dengan kemiringan(slope) potsitif atau -1 dengan kemiringan negatif. Untuk koofesien kolerasi sempurna, tidak diperlukan hipotesi dengan variabel X memiliki hubungan yang sangat kuat dengan variabel Y.

B.     Kolerasi Pearson
Uji kolerasi pearson (product moment pearson) digunakan untuk menguji hipotesis kasosiatif (uji hubungan) dengan data inteval atau rasio. Uji yang dikembangkan oleh kaarl perason mensyaratkan sempel diambil secara acak data harus homogen, berdistribusi normal dan bersifat linier.
Studi kasus A : sebuah perusahaan memiliki data biaya iklan dan transaksi penjualan(dalam jutan rupiah) bulanan selama setahun seperti diperlihatkan dalam tabel 12.1 berikut ini :
Bulan
Biaya
Penjualan
Bulan
Biaya
Penjualan
1
175,40
1950,75
7
225,40
2450,00
2
215,25
2250,00
8
190,00
2075,00
3
198,30
2198,75
9
212,50
2215,75
4
220,75
2595,00
10
197,50
2015,00
5
215,25
2315,00
11
150,00
1815,50
6
175,40
2035,75
12
175,00
2487,75
Tabel 12.1 Biaya iklan dan transaksi penjualan

Data tersebut tersimpan dalam file BAB12A.sav, terdiri drai variabel, yaitu biaya (biaya iklan) dan penjualan (transaksi penjualan). Pembaca dapat mengikuti pembahasan secara aktif dengan asumsi program SPSS dan file tersebut telah siap dioperasikan. Prosedur penyelesaian studi kasus adalah sebagai berikut.
1.      Pilih dan klik menu Analyze >Correlate >Bivariat, jendela atau kontak dialog Bivariate Correlations ditampilkan

Pindahkan kedua variabel ( biaya dan penjualan) sebagian variables bagian lain dibiarkan apaadanya ( kotak periksa pearson dan flag significant corelation ditandai)dan pada bagian Test of significane yang di[ilih adalah two-tailed (uji dua sisi) Flag significant correlasions berkenaan demgan tanda untuk tingkat signifikansi ditampilkan atau tidak pada hasil keluaran. SPSS memberi tanda * untuk 0,05 atau 5% dan ** untuk 0,01 atau % .Perhatikan tampilan jendela seperti diperlihatkan dalam gambar 12.1

2.      Klik tombol perintah OK

Hasil olah data dan cara membaca hasil atau interpretasi dijelaskan berikut ini.













Informasi yang didapatkan, pertama menunjukan hubungan antara variabel biaya dan penjualan dengan angka koofesien kolerasi pearson sebesar 859** (0,859). Angka tersebut mendekati 1 yang berarti kolerasi antara biaya iklan dengan transaksi penjualan adalah sangat kuat. Tanda ** (dua bintang) berarti kolerasi signifikan pada angka signifikasi 0,01 dan mempunyai kemungkinan 2 arah (2-tailed) – lihat penjelasan diposisi bawah tabel hasil
Kedua, signifikansi kedua variabel sebesar ,000 (0,000) seperti diperlihatkan dengan keterangan sig. (2-tailed). Hubungann kedua variabel 0,000 < 0,001 (jika tanpa **-angka signifikansi 0,05) yang berarti hubungan kedua variabel signifikan. Hubungan variabel dua arah (2-tailed) yang berarti dapat searah dan tidak searah.
Ketiga untuk melihat arah korelasi, perhatikan angka koofesien korelasi, dalam kasus ini (0,859) yang berarti kedua variabel berkolerasi searah. Artinya jika nilai iklan naik, nilai transaksi penjualan juga mengalami kenaikan.


  











Kasus studi B : Seorang mahasiswa tertarik ingin mengetahui apakah terdapat hubungan antara usia (tahun) dengan tekanan darah sistolik dengan data berikut ini.
Data tersebut tersimpan dalam fle BAB12B.cav, terdiri dari dua variabel, yaitu usia (usia responden) dan tekanan (tekanan darah sistolik). Pembaca dapat mengikuti pembahasan secara aktif dengan asumsi program SPSS dan file tersebut telah siap dioperasikan. Prosedur penyelesaian studi kasus adalah sebagai berikut.


1.      Pilih dan klik menu Analyze >Correlate >Bivariat, jendela atau kontak dialog Bivariate Correlations ditampilkan.













2.      Pindahkan kedua vriabel (usia dan tekanan) kebagian Variabels, tampilan jendela seperti diperlihatkan dalam gambar 12.2. akhir klik tombol perintah Ok


 

















Hasil olah data dan cara membaca hasil atau interpretasi dijelaskan berikut ini.


 













Informasi yang didaatkan pertama, menunjukkan hubungan antara variabel, usia dan tekanan dengan angka koefisien korelasi Pearson sebesar 765 ⃰⃰  ⃰⃰ (0,765).  Anagka tersebut mendekati  yang berarti korelasi antara usia responden dengan tekanan darah sistolik adalah kuat. Tanda  ⃰⃰ (satu bintang) berarti korelasi signifikan pada angka signifikasi 0,05 dan mempunyai kemungkinan 2 arah (2-tailed) – lihat penjelasan di posisi bawah tabel hasil.
Kedua, untuk mengambil keputusan susun hipotesis berikut
Ho : tidak ada hubungan antara usia dengan tekanan darah sistolik
Ha : ada atau terdapat hubungan antara usia dengan tekanan darah sistolik

Dasar pengambilan keputusan sebagai berikut
Jika Sig. > 0,05 Ho diterima, Ha ditolak
Jika Sig. < 0,05 Ho ditolak, Ha diterima
Angka pada Sig. (2-tailed) sebesar 0,010 sehingga menjadi 0,005 < 0,025 yang berarti Ho ditolak atau Ha diterima. Artinya, ada hubungan antara usia dengan tekanan darah sistolik.


C.    Contoh Kasus :
1.      Sebuah perusahaan industri mempunyai data produksi bulanan selama sepuluh bulan dan jumlah jam kerja seperti Tabel 1 dibawah ini.
Produksi bulanan dan jam kerja.
Bulan
Produksi (Xi)
Jam Kerja (Yi)
1
30
73
2
20
50
3
60
128
4
80
170
5
40
87
6
50
108
7
60
135
8
30
69
9
70
148
10
60
132
Menggunakan data dari Tabel, nilai koefisien korelasinya adalah:
Bulan
Produksi (X)
Jam Kerja (Y)
X2
Y2
XY
1
30
73
900
5329
2190
2
20
50
400
2500
1000
3
60
128
3600
16384
7680
4
80
170
6400
28900
13600
5
40
87
1600
7569
3480
6
50
108
2500
11664
5400
7
60
135
3600
18225
8100
8
30
69
900
4761
2070
9
70
148
4900
21904
10360
10
60
132
3600
17424
7920
Jumlah
500
1100
28400
134660
61800
https://digensia.files.wordpress.com/2012/03/c3.png?w=300&h=107





Besar hubungan linier antara produksi dan jam kerja karyawan pada perusahaan industri tersebut adalah sebesar 0,9978 atau sebesar 99,78 persen. Jika nilai korelasi dikuadratkan akan didapat suatu nilai yang menyatakan besarnya pengaruh variasi suatu variabel terhadap variabel lainnya. Nilai tersebut biasa disebut dengan koefisien determinasi (r2) (coefficient of determination). Koefisien determinasi mempunyai range nilai berkisar antara 0 sampai 1. Dalam hal contoh diatas, variasi produksi mempunyai pengaruh sebesar 99,56 persen terhadap variasi jam kerja karyawan pada perusahaan tersebut.
D.    Uji untuk korelasi Pearson.
Uji ini digunakan untuk menentukan apakah ada hubungan linier yang signifikan antara dua variabel.  Uji ini termasuk klasifikasi uji statistik parametrik.
Hipotesanya adalah:
Ho : ρ = 0      VS       H1 :  ρ ≠ 0
Statistik uji yang digunakan adalah statistik uji t.   Formulanya adalah sebagai berikut:
                   ~   t(a/2 , n-2)
daerah tolak H0:
t <- t(a/2 , n-2)        dan      t > t(a/2 , n-2)
Menggunakan data dari Tabel 1, uji untuk menentukan apakah ada hubungan linier antar variabel produksi dengan jam kerja dengan menguji koefisien korelasi populasi dengan tingkat signifikansi sebesar 5%.

t(0,025 ;8)= 2,31


Keputusan:      H0 ditolak karena  t > t(0,025 ;8)
Kesimpulan : ada hubungan linier antara produksi dengan jam kerja dengan tingkatkeyakinan sebesar 95%
Berikut cara Uji Korelasi menggunakan SPSS :
1.      Pilih dan klik menu Analyze >Correlate >Bivariat, jendela atau kontak dialog Bivariate Correlations ditampilkan.


 














2.      Pindahkan kedua Variabel (X dan Y) kebagian Variabels, tampilan jendela seperti diperlihatkan dalam gambar. Akhir klik tombol perintah OK
















Hasil olah data dan cara membaca hasil atau interpretasi dijelaskan berikut ini.


 












DAFTAR PUSTAKA
Arifin, Johar. 2017. SPSS 24 Untuk Penelitian dan Skripsi, Edisi Pertama. Jakarta: PT Elex
Media Komputindo



Komentar

Postingan populer dari blog ini

Tempe Alakatak Khas Weru, Sederhana tapi Istimewa

Pendakian Lawu Via Cemoro Kandang